Problem Set 4 - LV 141.A55 QISS - 18.4.2016

1. Controlled Not in a Different Bases

Show that Hadamard gate performs a transformation from the z to the x-axes.

What happens with a y-state $|y\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i |1\rangle)?$

Calculate the controlled not gate in the x bases?

$$-H \rightarrow H -$$

$$-H \rightarrow H -$$

2. Universal Two Qubit Gate

$$\sqrt{\text{SWAP}} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \frac{1-i}{2} & \frac{1+i}{2} & 0\\ 0 & \frac{1+i}{2} & \frac{1-i}{2} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Show that the gate $\sqrt{\text{SWAP}}$ is a universal two-qubit gate by building a CNOT out of one or several $\sqrt{\text{SWAP}}$ and single qubit operations.

Hint: one needs two $\sqrt{\text{SWAP}}$.

The SWAP gate is not a universal. Can you find an argument?

3. Two Qubit Interactions

Consider the following two qubit interaction Hamiltonians and study unitary evolution. For how long do you have to apply these interactions in order to create a universal gate.

(a) Ising interaction

$$H_{zz} = -j_{zz}\sigma_{z,1}\sigma_{z,2}$$

(b) Heisenberg interaction

$$H_{jj} = -j_{jj}(\sigma_{x,1}\sigma_{x,2} + \sigma_{y,1}\sigma_{y,2} + \sigma_{z,1}\sigma_{z,2})$$

(c) XY interaction

$$H_{xy} = -j_{xy}(\sigma_{x,1}\sigma_{x,2} + \sigma_{y,1}\sigma_{y,2})$$